- Řešte rovnici x^2 + 2x + 2 = 0 s neznámou x \in \mathbb{C}.
\mathbb{M} = \mathbb{C}, \mathbb{D} = \mathbb{C}
x^2 + 2x + 2 = (x + 1 - i)(x + 1 + i)
x_k =\Big[ cos   ( \frac {\pi + 2k \pi}{2} ) + i   sin   ( \frac {\pi + 2k \pi}{2}) \Big] , kde k = 0, 1
\mathbb{K} = \left \{-1 \pm i \right \}
- Řešte rovnici y^3 - 2 = 0 s neznámou y \in \mathbb{C}.
\mathbb{M} = \mathbb{C}, \mathbb{D} = \mathbb{C}
y^3 - 2 = y^3 - (\sqrt[3]{2})^3 = (y - \sqrt[3]{2})(y^2 + \sqrt[3]{2}y + \sqrt[3]{2^2})
y_k =\sqrt[3]{2} \Big[ cos   ( \frac { 2k \pi}{3} ) + i   sin   ( \frac { 2k \pi}{3}) \Big] , kde k = 0, 1, 2
\mathbb{K} = \left \{ \sqrt[3]{2},\frac{1}{2}\sqrt[3]{2}(-1 \pm i \sqrt{3} ) \right \}
- Řešte rovnici z^6 - 1 = 0 s neznámou z \in \mathbb{C}.
\mathbb{M} = \mathbb{C}, \mathbb{D} = \mathbb{C}
z^6 - 1 = {(z^3)}^2-1=(z^3-1)(z^3+1)=(z-1)(z^2+z+1)(z+1)(z^2-z+1)
z_k = \Big[ cos   ( \frac { 2k \pi}{6} ) + i   sin   ( \frac { 2k \pi}{6}) \Big] , kde k = 0, 1, 2, 3, 4, 5
\mathbb{K} = \left \{\pm 1, \frac{1}{2}(-1 \pm i \sqrt{3} ), \frac{1}{2}(1 \pm i \sqrt{3} ) \right \}