Trojúhelník
Vlastnosti trojúhelníku
Trojúhelník ABC s vrcholy A, B, C lze definovat jako průnik tří polorovin ABC, BCA a CAB. Pokud tyto body leží v jedné přímce, potom takový trojúhelník neexistuje. Jedná se tedy o rovinný útvar ohraničený třemi úsečkami AB, AC, BC, které se nazývají strany trojúhelníku. Součtem úhlů vymezených vrcholy trojúhelníku BAC, CBA, ACB nebo také vnitřních úhlů trojúhelníku je úhel přímý (180º).
Aby trojúhelník o stranách a, b, c existoval, musí platit trojúhelníková nerovnost, tj. součet každých dvou délek stran musí být větší než délka strany třetí. Délky stran trojúhelníku značíme pro jednoduchost stejně jako strany samotné.
Trojúhelníková nerovnost:
a < b + c, b < a + c, c < a + b
Kratší zápis:|b - c| < a < b + c
Rozdělení trojúhelníků podle délek stran
Trojúhelník různostranný. a ≠ b ≠ c ≠ a | Trojúhelník rovnoramenný. a = b ≠ c | Trojúhelník rovnostranný. a = b = c |
U rovnoramenného trojúhelníku se stejně dlouhé strany nazývají ramena, strana třetí je potom základna.
Rozdělení trojúhelníků podle velikosti vnitřních úhlů
Trojúhelník ostroúhlý, velikosti vnitřních úhlů jsou menší než 90º. | Trojúhelník pravoúhlý, velikost jednoho úhlu je rovna 90º. | Trojúhelník tupoúhlý, velikost jednoho úhlu je větší než 90º. |