zobraz celé řešení | |
<< předchozí snímek | následující snímek>> |
Zadání: Sestrojte řez kolmého pětibokého hranolu ABCDEFGH rovinou XYZ, kde bod X leží na hraně AF, bod Y leží na hraně GH, bod Z leží na polopřímce ED za bodem D. Při řešení úlohy využijeme osové afinity mezi rovinou řezu a rovinou dolní podstavy a za směr afinity s vezmeme směr bočních hran.
Nejprve musíme najít osu afinity, která je průsečnicí roviny dolní podstavy a roviny řezu dané body XYZ.
K sestrojení osy afinity budeme potřebovat dva body. Bod Z náleží oběma rovinám, je samodružný a leží tedy i na hledané ose afinity. Druhý bod získáme pomocí bodů X, Y. Obrazem přímky XY v zadané osové afinitě je přímka AY', protože obrazem bodu X je bod A a bodu Y je bod Y'. Průsečíkem přímky XY a přímky AY' je samodružný bod P, který bude ležet na ose afinity.
Pomocí bodů P, Z již můžeme sestrojit osu afinity o.
Osa afinity leží v rovině dolní podstavy tělesa a navíc protíná hrany podstavy, proto průsečíky T, U osy afinity s hranami dolní podstavy jsou body řezu.
Sestrojíme bod řezu V na hraně FG. Bod R je průsečík přímky AB s osou o. Vzorem přímky AB je přímka XR a tedy bod řezu V je průsečíkem přímky XR s hranou FG.
Sestrojíme bod řezu W na hraně CH stejným postupem jako bod V.
Nyní známe všechny vrcholy mnohoúhelníku, který je řezem, a strany tohoto mnohoúhelníku jsou hranicemi řezu v příslušných stěnách.
|
Nejprve musíme najít osu afinity, která je průsečnicí roviny dolní podstavy a roviny řezu dané body XYZ. K sestrojení osy afinity budeme potřebovat dva body. Bod Z náleží oběma rovinám, je samodružný a leží tedy i na hledané ose afinity. Druhý bod získáme pomocí bodů X, Y. Obrazem přímky XY v zadané osové afinitě je přímka AY', protože obrazem bodu X je bod A a bodu Y je bod Y'. Průsečíkem přímky XY a přímky AY' je samodružný bod P, který bude ležet na ose afinity. |
|
Pomocí bodů P, Z již můžeme sestrojit osu afinity o. | |
Osa afinity leží v rovině dolní podstavy tělesa a navíc protíná hrany podstavy, proto průsečíky T, U osy afinity s hranami dolní podstavy jsou body řezu. | |
Sestrojíme bod řezu V na hraně FG. Bod R je průsečík přímky AB s osou o. Vzorem přímky AB je přímka XR a tedy bod řezu V je průsečíkem přímky XR s hranou FG. | |
Sestrojíme bod řezu W na hraně CH stejným postupem jako bod V. | |
Nyní známe všechny vrcholy mnohoúhelníku, který je řezem, a strany tohoto mnohoúhelníku jsou hranicemi řezu v příslušných stěnách. |